19,279 research outputs found

    Revisiting the BB-physics anomalies in RR-parity violating MSSM

    Full text link
    In recent years, several deviations from the Standard Model predictions in semileptonic decays of BB-meson might suggest the existence of new physics which would break the lepton-flavour universality. In this work, we have explored the possibility of using muon sneutrinos and right-handed sbottoms to solve these BB-physics anomalies simultaneously in RR-parity violating minimal supersymmetric standard model. We find that the photonic penguin induced by exchanging sneutrino can provide sizable lepton flavour universal contribution due to the existence of logarithmic enhancement for the first time. This prompts us to use the two-parameter scenario (C9V,C9U)(C^{\rm V}_9, \, C^{\rm U}_9) to explain bs+b \to s \ell^+ \ell^- anomaly. Finally, the numerical analyses show that the muon sneutrinos and right-handed sbottoms can explain bs+b \to s \ell^+ \ell^- and R(D())R(D^{(\ast)}) anomalies simultaneously, and satisfy the constraints of other related processes, such as BK()ννˉB \to K^{(\ast)} \nu \bar\nu decays, BsBˉsB_s-\bar B_s mixing, ZZ decays, as well as D0μ+μD^0 \to \mu^+ \mu^-, τμρ0\tau \to \mu \rho^0, BτνB \to \tau \nu, DsτνD_s \to \tau \nu, τKν\tau \to K \nu, τμγ\tau \to \mu \gamma, and τμμμ\tau \to \mu\mu\mu decays.Comment: 10 pages, 8 figures, matches to the version published in EPJ

    Modeling and Analysis of MPTCP Proxy-based LTE-WLAN Path Aggregation

    Full text link
    Long Term Evolution (LTE)-Wireless Local Area Network (WLAN) Path Aggregation (LWPA) based on Multi-path Transmission Control Protocol (MPTCP) has been under standardization procedure as a promising and cost-efficient solution to boost Downlink (DL) data rate and handle the rapidly increasing data traffic. This paper aims at providing tractable analysis for the DL performance evaluation of large-scale LWPA networks with the help of tools from stochastic geometry. We consider a simple yet practical model to determine under which conditions a native WLAN Access Point (AP) will work under LWPA mode to help increasing the received data rate. Using stochastic spatial models for the distribution of WLAN APs and LTE Base Stations (BSs), we analyze the density of active LWPA-mode WiFi APs in the considered network model, which further leads to closed-form expressions on the DL data rate and area spectral efficiency (ASE) improvement. Our numerical results illustrate the impact of different network parameters on the performance of LWPA networks, which can be useful for further performance optimization.Comment: IEEE GLOBECOM 201

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013
    corecore